## LINEAR RAMP

When the pullup resistor,  $R_A$ , in the monostable circuit is replaced by a constant current source, a linear ramp is generated. Figure 17 shows a circuit configuration that will perform this function.

Figure 17.

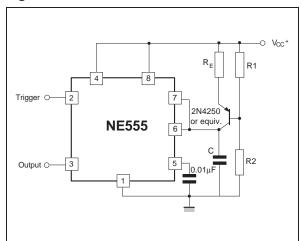
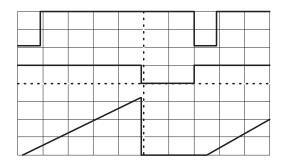




Figure 18 shows waveforms generator by the linear ramp.

The time interval is given by:

$$T = \frac{(2/3 \ V_{CC} \ R_E \ (R_{1+} \ R_{2)} \ C}{R_1 \ V_{CC} - V_{BE} \ (R_{1+} \ R_{2)}} \ V_{BE} = 0.6 V$$

Figure 18: Linear Ramp.

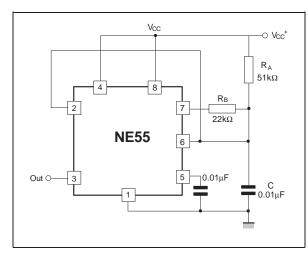


 $\begin{array}{l} V_{CC}=5V\\ Time=20\mu s/DIV\\ R_1=47k\Omega\\ R_2=100k\Omega\\ R_E=2.7k\Omega\\ C=0.01\mu F \end{array}$ 

Top trace: input 3V/DIV Middle trace: output 5V/DIV Bottom trace: output 5V/DIV Bottom trace: capacitor voltage

1V/DIV

## 50% DUTY CYCLE OSCILLATOR


For a 50% duty cycle the resistors  $R_A$  and  $R_E$  may be connected as in figure 19. The time preriod for the output high is the same as previous,

$$t_1 = 0.693 R_A C$$
.

For the output low it is 
$$t_2$$
 = 
$$[(R_AR_B)/(R_A+R_B)] \ CLn \left[ \frac{R_B-2R_A}{2R_B-R_A} \right]$$
 Thus the frequency of oscillation is  $f=\frac{1}{t_1+t_2}$ 

Note that this circuit will not oscillate if R<sub>B</sub> is greater

Figure 19: 50% Duty Cycle Oscillator.



than 1/2 R<sub>A</sub> because the junction of R<sub>A</sub> and R<sub>B</sub> cannot bring pin 2 down to 1/3  $V_{CC}$  and trigger the lower comparator.

## ADDITIONAL INFORMATION

Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is  $0.1\mu F$  in parallel with  $1\mu F$  electrolytic.